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Indefinite metacavities (IMCs) made of hyperbolic metamaterials show great advantages in terms of extremely
small mode volume due to large wave vectors endowed by the unique hyperbolic dispersion. However, quality (Q)
factors of IMCs are limited by Ohmic loss of metals and radiative loss of leaked waves. Despite the fact that Ohmic
loss of metals is inevitable in IMCs, the radiative loss can be further suppressed by leakage engineering. Here we
propose a mirror coupled IMC structure which is able to operate at Fabry–Pérot bound states in the continuum
(BICs) while the hyperbolic nature of IMCs is retained. At the BIC point, the radiative loss of magnetic dipolar
cavity modes in IMCs is completely absent, resulting in a considerably increased Q factor (>90). Deviating from
the BIC point, perfect absorption bands (>0.99) along with a strong near-field intensity enhancement
(>1.8 × 104) appear when the condition of critical coupling is almost fulfilled. The proposed BICs are robust
to the geometry and material composition of IMCs and anomalous scaling law of resonance is verified during the
tuning of optical responses. We also demonstrate that the Purcell effect of the structure can be significantly im-
proved under BIC and quasi-BIC regimes due to the further enhancedQ factor to mode volume ratio. Our results
provide a new train of thought to design ultra-small optical nanocavities that may find many applications
benefitting from strong light–matter interactions. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.508159

1. INTRODUCTION

Optical metamaterials are man-made microstructures or nano-
structures that can be designed to acquire optical properties out
of the scope of natural materials [1–3]. The past few decades
have witnessed the rapid development of optical metamaterials
ranging from left-handed materials [4–6], zero-index materials
[7,8], and ultra-high-index materials [9,10] to various func-
tional metasurfaces [11,12]. Among them, hyperbolic metama-
terials (HMMs) also known as indefinite metamaterials have
attracted particular interest in recent years because of their
promising applications in areas such as subwavelength far-field
imaging [13], spontaneous emission engineering [14–16], and
active devices [17]. The principal elements of the permittivity
tensor of HMMs do not have the same sign, leading to a hyper-
boloidal iso-frequency surface (IFS) [18–20]. In principle, wave
vectors in ideal HMMs can be infinitely large. Such a unique
and intriguing property makes HMMs an excellent candidate
for realizing ultra-small optical cavities of which the size can be
shrunk to deep-subwavelength scale. Yao et al. theoretically

studied the nanometer-scale optical cavities made of HMMs,
namely indefinite metacavities (IMCs), and demonstrated that
the size of IMCs can be as small as �λ∕20�3 (λ is the wavelength
in vacuum) [21]. They further found that both resonance
frequencies and quality (Q) factors of IMCs show anomalous
scaling law with respect to cavity sizes. About one year after this
work, three-dimensional IMCs configured as stacked metal–di-
electric layers were theoretically and experimentally demon-
strated by Yang et al. [22]. Inspired by these two pioneer
works, much research focusing on applications of IMCs has
been reported, such as surface-enhanced Raman spectroscopy
[23], nonlinear optics [24,25], wave absorbers [26,27], micro-
lasers and nanolasers [28,29], and optical and thermal radiation
engineering [30–32].

Generally, many applications demonstrated in optical mi-
crocavities or nanocavities rely on the strength of light–matter
interaction, which is basically determined by the ratio of Q fac-
tor to mode volume V m, i.e., Q∕V m [33,34]. For IMCs, V m

can be extremely small due to the large wave vectors supported
by HMMs [21,22]. However, nonradiative quality factor (Qnr)

598 Vol. 12, No. 3 / March 2024 / Photonics Research Research Article

2327-9125/24/030598-10 Journal © 2024 Chinese Laser Press

https://orcid.org/0000-0002-3154-1702
https://orcid.org/0000-0002-3154-1702
https://orcid.org/0000-0002-3154-1702
https://orcid.org/0000-0002-0707-7663
https://orcid.org/0000-0002-0707-7663
https://orcid.org/0000-0002-0707-7663
mailto:zhangqiang02@tyut.edu.cn
mailto:zhangqiang02@tyut.edu.cn
mailto:zhangqiang02@tyut.edu.cn
https://doi.org/10.1364/PRJ.508159


of IMCs is inevitably limited by the Ohmic loss of metals, lead-
ing to totalQ factor of reported IMCs smaller than 50 [21–23].
Notwithstanding, it is still possible to further reduce the radi-
ative loss, in other words, improve the radiative quality factor
Q r of IMCs by structure design. Recently, optical bound states
in the continuum (BICs) have gained much attention as they
provide an appealing approach to obtain narrow optical reso-
nances [35–37]. Theoretically speaking, an ideal BIC in a loss-
less system has an infinitely large Q factor and is completely
decoupled to far fields [38–40]. When the BIC condition is
slightly broken, BICs turn into quasi-BICs with finite but still
high Q factors. For a system with dissipating materials, for ex-
ample metals, upper limits of Q factors of BICs or quasi-BICs
are restricted by Ohmic loss but the radiative loss can still be
suppressed. Therefore, it is expected that IMCs working with
BICs or quasi-BICs may show optical resonances that are not
only endowed with boosted Q factors, but also bear the hyper-
bolic nature such as anomalous resonance scaling law and ultra-
small mode volume.

In this work, we present such attempts by placing arrays of
IMCs made of stacked metal–dielectric layers on top of a re-
flecting mirror to realize Fabry–Pérot BICs. Similar to high-
index nanoparticles or metal–insulator–metal resonators, IMCs
also support in-plane magnetic modes that can couple to their
images in the mirror [41–45]. We show that Fabry–Pérot BICs
and quasi-BICs are obtained when the separation between
IMCs and the reflecting mirror is appropriately tuned. As ex-
pected, the radiative damping rate �γr� of the mirror coupled
IMC arrays depends on the separation and can be totally sup-
pressed at the point of BIC. More importantly, mirror coupled
IMCs can still be regarded as a cavity made of effective hyper-
bolic material and exhibit anomalous scaling law of the reso-
nance wavelength with respect to their sizes. Meanwhile, the
principle demonstrated here opens up the possibility of
obtaining near-perfect absorption (PA) with IMCs where the
critical coupling condition can be fulfilled via tuning γr to
match it with the nonradiative damping rate �γnr�. As a dem-
onstration of strong light–matter interaction, we verify that the
Purcell effect of IMCs can be enhanced by BICs and quasi-
BICs. Our results provide a feasible scheme that combing
IMCs and BICs to design ultra-small optical nanocavities with
further enhanced Q∕V m for widespread applications.

2. RESULTS AND DISCUSSION

Without loss of generality, we first study the properties of
HMMs configured as stacked Ag–Si multilayers where the
thickness of one Ag–Si pair (tc) is 20 nm and the filling ratio
of Ag in one pair (f m) is 0.5. The permittivity of Si is fixed as
12.25 [41] and that of Ag is taken from the empirical data [46].
Figure 1(a) shows the real parts of the effective permittivities of
in-plane components εx∕y and out-of-plane component εz of
the HMM with infinite numbers of Ag–Si pairs based on
Maxwell–Garnett effective media theory (see Appendix A). It
is seen that Re�εx∕y� and Re�εz� have opposite signs in the
wavelength range of 1000 to 1400 nm. In detail, Re�εx∕y� < 0
and Re�εz� > 0 indicate the studied Ag–Si multilayers corre-
spond to a type-II HMM as confirmed by the hyperboloidal
IFS given in the right inset of Fig. 1(a). Here we consider a

three-dimensional IMC made of Ag–Si multilayer HMMs with
width w � 100 nm and height h � 160 nm (eight Ag–Si
pairs), as sketched by the left inset in Fig. 1(a). Such an IMC
supports cavity modes of different orders that can be excited by
a near-field source, for example, a point dipole. Figure 1(b)
shows the calculated radiation power of an electric point dipole
(red arrow) along the x direction located 10 nm away from the
center of the top surface of the IMC. The calculation is per-
formed by applying the finite-difference time-domain method
(see Appendix B). The spectrum of radiation power shows
multiple peaks coming from cavity modes of different orders
(mx , my, mz), where mi (i � x, y, z) indicates the number of
field nodes in the i direction. We focus on four dominant peaks
labeled by the color dots in Fig. 1(b) and their near-field
distributions of Ez (z component of the electric field) and
Hy �y component of the magnetic field) on the xoz plane are
given by the corresponding insets. According to the near-field
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Fig. 1. HMMs and IMCs made of Ag–Si multilayers. (a) Real parts
of effective in-pane �εx∕y� and out-of-plane �εz� permittivities of the
HMM. The IMC made by Ag–Si multilayers and the IFS of the cor-
responding HMM are shown by the left and right insets, respectively.
(b) Spectrum of the radiation power of an x-direction electric dipole
close to the IMC. Distributions of the predominate components of
near fields of the cavity modes of selected orders.
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distributions, we can identify these four peaks are attributed to
cavity modes of (1, 1, 1), (1, 1, 2), (1, 1, 3), and (1, 1, 4) from
short to long wavelength. Here we notice that higher-order
modes of the IMC are resonant at longer wavelengths, which
is contrary to normal optical cavities. Such an anomalous fea-
ture is consistent with previous reports [21,22] and confirms
that wave vectors within the proposed IMC bearing hyperbolic
dispersion manifested as the same in-plane but larger out-
of-plane wave vectors reside at IFSs at lower frequencies (see
Appendix C). Another important observation is the labeled
modes in Fig. 1(b) regarded as in-plane magnetic multipoles,
especially mode (1, 1, 1) that is in fact a y-direction magnetic
dipole we will focus on later.

Then, we put a square array of the above IMCs on top
of a 300 nm thick Ag mirror and separate them by a SiO2

(refractive index 1.45 [41]) layer with thickness of s, as sketched
by Fig. 2(a). Here, the lattice constant is fixed as a � 700 nm
and the whole structure is on an infinitely thick SiO2 substrate
and excited by a normally incident plane wave polarized along
the x direction. Optical responses of such a resonator-on-mirror
structure can be modeled by the temporal coupled mode

theory. For simplicity, here we only focus on the coupling be-
tween the magnetic dipolar cavity modes (1, 1, 1) in the IMCs
and their images in the mirror. In the absence of the Ohmic
loss, the Hamiltonian of the system can be expressed as
Eq. (1), where ω0 is the resonant frequency of the uncoupled
modes, κ is the near-field coupling coefficient, and k and d are
the propagation constant and distance between two modes,
respectively:

H �
�
ω0 κ
κ ω0

�
− i

γr
2

�
1 e−ikd

e−ikd 1

�
: (1)

The eigenvalues of H in Eq. (1) can be obtained as [41,42]

ω� � ω0 � κ� iγr�� exp�ikd � − 1�: (2)

Here, only one of the eigenmodes is physically meaningful
as a magnetic dipole and its electric-mirror (Ag) image must be
in-phase [41,42,47]. According to the mode hybridization
theory [48], such in-phase coupling corresponds to the mode
with higher energy ω�. Based on Eq. (2), an ideal Fabry–Pérot
BIC is realized if ω� becomes a real number, which requires
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Fig. 2. BIC and PA in IMC arrays coupled to a reflecting mirror. (a) Schematic of the structure of IMC arrays coupled to an Ag mirror. The IMC
array has a square lattice with period a � 700 nm. The separation between the array and the Ag mirror is determined by the thickness of the SiO2

spacer (s). The whole structure is excited by a normally incident plane wave. (b) Evolution of absorption spectra, resonance wavelength, andQ factors
as a function of s. The positions of BIC and PA are marked by the red and blue arrows. (c) Absorption spectra at the PA point (s � 320 nm, red solid
line), at the BIC point (s � 140 nm, blue dashed line), and without the mirror (black dashed–dotted line). For comparison, the spectra of the cavity
made of effective hyperbolic medium are appended as symbols. (d) Spectra of maximum electric field enhancement at the PA point, at the BIC point,
and without the mirror. Amplitude distributions of electric and magnetic fields at the absorption peak at the PA point. (d) shares the same legends
as (c).
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kd � 2mπ (m is an integer). It is then clear that the structure is
able to work at the BIC regime either by tuning k or d, or both.
For the propagation constant k, it is determined by neffω0∕c,
where neff is the effective refractive index of the media between
two modes and ω0 is related to the size of the cavity. Here we fix
the size of IMCs, and tune d by changing the thickness of the
SiO2 spacer. Figure 2(b) shows the calculated contour map of
absorption of the structure as a function of s in the wavelength
range of 1000 to 1400 nm. As can be seen, there is a dominant
absorption band that evolves as s varies from 30 to 350 nm. In
particular, zero absorption appears at s � 140 nm (marked by
the red arrow), which is exactly a BIC point where the reso-
nance contributing to the absorption cannot be excited by
the plane wave. To learn more about this resonance, eigenval-
ues (resonance wavelengths) and Q factors of this resonance are
calculated by applying an eigenfrequency solver based on the
finite element method (see Appendix B). As shown by the
red circles in Fig. 2(b), eigenvalues match well with the center
of the absorption band. Interestingly, the eigenvalues are almost
independent on s, which is quite different from other similar
structures but with normal cavities such as Si disks or metal–
dielectric–metal antennas [35–37]. We argue that this is be-
cause the near-field confinement of IMCs is more significant
than other normal cavities, yielding negligible κ compared
to ω0 when s is larger than 30 nm. In addition to the total
Q factor, Q t (solid line), Q r (dashed line), and Qnr(dashed–
dotted line) are also calculated (see Appendix B) and appended
in Fig. 2(b) to disclose the mechanism of the BIC realized in
such a structure. Note that here Q r is rescaled by 1∕�4 × 104�
for a better visual. As can be seen, Q t, Q r, and Qnr show very
distinct trends of variation with the change of s. In detail, Q r

increases rapidly when s enters into a narrow range and reaches
a very large magnitude at s � 140 nm, which is exactly the
hallmark of BICs. On the sharp contrast, Qnr is almost inde-
pendent on s and the magnitude is much smaller than that
of Q r at the BIC point. This observation can be construed
by the underlying physics of BIC that it is realized by elimi-
nating the leakage of waves from the structure to far fields,
i.e., the radiative loss. On the one hand, for lossless systems
such as some all-dielectric structures with negligible Ohmic
loss, radiative loss is the only factor that limits the Q value that
will become infinitely large at the BIC point [38–40]. Here
the finite magnitude of Q r at the BIC point is caused by the
limited size of meshes in the numerical calculation. On the
other hand, for most plasmonic systems, for example, the IMC
studied here, Ohmic loss must be considered as metals are
necessary structural composition. The robustness of Qnr with
the change of s confirms that Ohmic loss is irrelevant to the
formation of BIC because it is determined by the inherent
properties of the mode and the material. Based on the relation-
ship 1∕Q t � 1∕Q r � 1∕Qnr, Q t of the proposed structure is
affected by both Q r and Qnr, resulting in the overall slow trend
of variation with the change of s (see the solid line). When
s � 140 nm, Q t reaches maximum (∼92) and converges to
Qnr, implying that 1∕Q r goes to zero and BIC is realized.

Another special point we should notice is the PA point at
s � 320nm where the absorption is over 0.99. Figure 2(c)
shows the absorption spectra of the BIC point s � 140 nm

(blue dashed line) and the PA point s � 320 nm (red solid
line). For comparison, the absorption spectrum of the array
of IMCs without the Ag mirror is also given as the black
dashed–dotted line. Considering the fact that no transmission
is allowed due to the optically thick Ag mirror, the incident
wave is totally reflected at the BIC point because the cavity
mode cannot be excited. As the true BIC condition is broken
when s ≠ 140 nm, the cavity mode is activated, and light is
absorbed by the structure. In particular, PA happens when
the critical coupling condition is fulfilled, as we will discuss
in more detail later. Here we also append the results of the same
system but Ag–Si stacked IMCs are replaced by cavities made of
effective hyperbolic materials; see symbols in Fig. 2(c). As can
be seen, the absorption spectra of the IMC arrays made of
Ag–Si layers and effective hyperbolic materials are almost over-
lapped, indicating the hyperbolic nature of IMCs is kept in the
BIC regime. Figure 2(d) shows the spectra of the maximum
electric near-field enhancement defined as jEj2max∕jE0j2 (E is
the electric field of the structure under excitation and E0 is that
of the incident wave) for the structure at the PA point (red solid
line), at the BIC point (blue dashed line), and without the mir-
ror (black dashed–dotted line). It shows that the maximum
near-field enhancement exceeds 1.8 × 104 at the resonance
of the PA point due to the ultra-strong field confinement of
IMCs. The amplitude distributions of electric and magnetic
fields are shown by the insets in Fig. 2(d), which confirms that
the resonance is the magnetic dipolar mode (1, 1, 1).

To get a deep understanding of the BIC and the PA points,
in Fig. 3(a) we show the calculated total damping rate γt (black
solid line), radiative damping rate γr (blue dashed line), and
nonradiative damping rate γnr (red dashed–dotted line) of
the structure as a function of s (see Appendix B). Clearly, γnr
is nearly independent on s as it is mainly determined by the
Ohmic loss of metals in the structure. In contrast, γr is strongly
affected by s and vanishes at s � 140 nm, i.e., at the BIC point.
As a consequence, the total damping rate (γt) of the structure
declines to γnr at the BIC point as marked by the red arrow.
Meanwhile, the PA point (see the blue arrow) corresponds
to the position where γr is nearest to γnr, implying the condition
of critical coupling is almost satisfied. Based on the temporal
coupled mode theory, the absorption of the structure can be
obtained by Eq. (3) [41,49]:

A � 4γrγnr
�ω − ω0�2 � γ2t

: (3)

The condition of critical coupling refers to γr � γnr where
the absorption A reaches 100% at ω � ω0. As shown in
Fig. 3(b), the calculated absorption spectrum based on Eq. (3)
agrees well with the numerical result. Note that although the
condition of critical coupling is not perfectly met according to
the results shown in Fig. 3(a), the absorption can still surpass
0.99 near the PA point since γr is very close to γnr when s is
in the range of 270 to 350 nm.

Next, we investigate how to modulate optical responses
of the structure by geometries and material compositions.
Figures 4(a) and 4(b) show the evolution of absorption spectra
as a function of s for the structure with w � 80 nm and
w � 120 nm, respectively. Shrinking (expanding) IMCs in
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the x and y directions results in resonance of cavity mode
(1, 1, 1) at shorter (longer) wavelength as can be seen from
the shift of absorption bands. At the same time, the BIC points
also appear at different s because the propagating constant (k)
between two coupled modes changes due to different resonance
frequency. In addition, the structure with w � 80 nm shows
the narrowest absorption band compared to those of w �
100 nm [Fig. 2(b)] and w � 120 nm [Fig. 4(b)], indicating
a high Q factor. The reason for the increased Q factor may
come from two aspects. First, volume of metals is reduced
in smaller IMCs, resulting in less nonradiative damping; sec-
ond, the radiative Q factor (Q r) of IMCs is inversely propor-
tional to the fourth power of the characteristic length L, i.e.,
Q ∝ L−4 [21], where L � V 1∕3 and V is the volume of the
cavity. To study the structure with IMCs of different height
h, we plot the absorption contour maps of the structure
with 6 (h � 120 nm) and 10 (h � 200 nm) Ag–Si pairs in
Fig. 4(c) and Fig. 4(d), respectively. It shows that the absorp-
tion band of the structure with thinner (thicker) IMCs locates
at the longer (shorter) wavelength. This resonance shift is ap-
parently opposite to the case for cavities made of normal ma-
terials, further confirming mirror coupled IMCs still bear the
nature of HMMs. The anomalous resonance shift is consistent
with the result shown in Fig. 1(b) that both can be understood
by analyzing the unique IFSs of HMMs (see Appendix C).
Similar to result of Fig. 4(a), smaller cavities have a narrower
absorption band. However, one should keep in mind that the
number of Ag–Si pairs cannot be too small, otherwise the Ag–
Si multilayers will deviate from the effective HMM. Another
parameter we want to discuss is the filling ratio (f m) of Ag
because it is the only degree of freedom to tune the effective
permittivity tensor of Ag–Si multilayer HMMs (see
Appendix A). Figures 4(e) and 4(f ) are the plots of absorptions
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for the structure with f m � 0.3 and f m � 0.7, respectively,
which show absorption bands at different wavelengths. This
resonance tuning property is readily understood by the varia-
tion of IFSs of HMMs with different permittivity tensors. Note
that there is a limited range of f m (about 0.2 to 0.8) for the Ag–
Si multilayers that can be treated as a type-II HMM in the
wavelength range from 1000 to 1600 nm. Out of this range,
the Ag–Si multilayers will degenerate to either effective dielec-
trics (f m < 0.2) or effective metals (f m < 0.8) (see
Appendix A). Overall, results in Fig. 4 show flexible tuning
of the optical responses of mirror coupled IMCs while BICs
are robust for different parameters. However, one may find that
not all the structures in Fig. 4 present features of PA in the
considered space of parameters (see the upper limits of color
bars). Interestingly, it seems that PA is more likely to be realized
in structures with larger volume of metals as in Figs. 4(b), 4(d),
and 4(f ). Moreover, results in Fig. 4 indicate that it is possible
to obtain PA with perfectly matched γr and γnr by adjusting the
geometry and material compositions of the structure. For ex-
ample, the maximum absorption of the structure with
w � 120 nm shown in Fig. 4(b) is larger than 0.9999 as
the calculated relative difference jγnr − γrj∕γnr is less than 5%.

After the analysis of the BIC and PA realized in mode
(1, 1, 1), we investigate more about the mirror coupled
IMCs by surveying the mode characteristics of three higher-
order modes that are mode (1, 1, 2), mode (1, 1, 3), and mode
(1, 1, 4). In Fig. 5(a), we show the absorption and reflection
spectra of the structure under the excitation of a plane wave in
the wavelength range from 1400 to 2450 nm. It is seen that the
absorption (reflection) spectrum shows three peaks (dips) of
which the resonance wavelengths are in accordance with those
of mode (1, 1, 2), mode (1, 1, 3), and mode (1, 1, 4) shown in
Fig. 1(b) in turn. However, it is noted that all the absorption
peaks are extremely tiny (smaller than 0.02) while the overall
reflection is larger than 0.98, indicating that the excitation of
those higher-order modes by a plane wave is quite weak com-
pared to that of mode (1, 1, 1), as shown in Fig. 2(c). This
observation can be construed by the fact that these higher-order
modes are actually “dark modes” to a far-field source such as a
plane wave. From the distributions ofHy shown in the insets of
Fig. 1(b), we can regard these higher-order modes as resonances

with multiple magnetic dipoles in opposite phases, leading
to nearly zero net dipole moment. Therefore, it is not possible
to realize perfect absorption by these higher-order modes.
However, we stress that these “dark modes” can be efficiently
excited by a near-field source (e.g., a dipole), as shown in
Fig. 1(b). The resonance wavelengths and Q factors of these
modes as functions of s are further calculated and shown in
Fig. 5(b). As can be seen, both the resonance wavelengths
and Q factors of these modes are inert to s and no sign of
BIC can be identified. To present a more detailed analysis,
in Fig. 5(c) we show the evolution of γr and γnr of these modes
with the change of s. It is seen that γnr is much larger than γr
(2 orders of magnitude at least) for all these modes, which is
quite different from the case of mode (1, 1, 1), as shown in
Fig. 3(a). This further verifies that these higher-order modes
barely radiate to far fields and their Ohmic loss is quite strong.
Interestingly, mode (1, 1, 3) exhibits a hallmark of BIC by
noticing that γr almost vanishes at the dip at s ≈ 270 nm.
Nevertheless, such BIC is meaningless as γnr dominates the
damping, resulting in no significant enhancement of the total
Q factor by this BIC, as can be seen in Fig. 5(b).

In the final discussion, we want to give a brief demonstra-
tion of the enhanced lighter–matter interactions by combining
BICs and IMCs. At the BIC point, the fields of the mode
(1, 1, 1) are strongly confined within the cavity and do not
contribute to far-field radiation but can leak to the near-field
regime. The strong light–matter interaction at nanoscale can be
realized in regions within or very close to IMCs. One of the
most common effects due to the strong light–matter inter-
actions is the enhancement of spontaneous emission rate of
quantum emitters, known as the Purcell effect. Experimental
demonstrations of strong light–matter interactions related to
the Purcell effect have been realized by spin coating quantum
dots on IMC arrays [14,15] or doping laser dye in the dielectric
layers of HMMs [50]. Theoretically, the Purcell effect can be
investigated by calculating the Purcell factor of the structure.
To this end, in Fig. 6(a) we show the calculated spectra of the
Purcell factor of the mirror coupled IMC arrays with varying s.
Here, the calculation is carried out for an electric dipole along
the x direction located 10 nm away from the center of the top
surface of the center IMC in a structure containing 5 × 5 arrays.
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The Purcell factor is obtained by calculating the ratio Pdip∕P0,
where Pdip is the radiative power of the dipole close to the struc-
ture and P0 is that when the structure is absent. As can be seen,
all the spectra of the Purcell factor show peaks with the Purcell
factor larger than 80 at about 1200 nm, which is exactly the
resonance wavelength of the cavity mode (1, 1, 1). This indi-
cates that the proposed structure is a good platform to realize
spontaneous emission-rate enhancement. This can be under-
stood by the fact that the Purcell factor of a nanocavity is ac-
tually proportional to Q∕V m [14–16]. In our structure, V m of
the mode (1, 1, 1) at the BIC point is calculated as small as
4:627 × 10−5 λ30 (λ0 is the resonance wavelength of the mode;
see Appendix B), which evidently confirms the extremely small
mode volume of the IMC due to the large wavenumber in
HMMs. As a result, Q∕V m is still as large as 1.945 × 106 λ−30
although the Q factor of the IMC (∼92 at the BIC point) can-
not compete with that of lossless structures. More importantly,
the mirror coupled structure presents an additional degree of
freedom to tune the Purcell enhancement as we can see that
peak values of the spectra of the Purcell factor are dependent
on s. To unravel the relation between the Purcell enhancement
and s, we plot peak values of the Purcell factor as a function of s
in Fig. 6(b). Note that here Purcell factors are normalized to the
peak value of the IMC array without the mirror. It shows that
the trend of the Purcell factor evolving as s is quite similar to
that of Q factors shown in Fig. 2(b). The maximum Purcell
factor appears at about s � 175 nm that is slightly deviated

from the BIC point s � 140 nm. This discrepancy comes from
the finite number of arrays in the calculation (5 × 5) as running
simulation models of more arrays is out of memory of our com-
putation resources. Notwithstanding, the result in Fig. 6(b) is
strong evidence that the Purcell effect of IMCs can be fur-
ther enhanced by BICs by noticing that the maximum of the
normalized Purcell factor can be larger than 1.4. We believe
this enhancement could be more significant in systems with
enough arrays where wave leaking from structure boundary
can be ignored.

3. CONCLUSION

In summary, we have shown that arrays of IMCs coupled to a
metal mirror can work under the framework of BICs while
keeping the intriguing features of hyperbolic HMMs. The
Q factor of IMCs can be effectively enlarged at the BIC point
by completely quenching the radiative loss. Similar to other
structures applying normal cavities, PA can also be realized
but the resonance shows an anomalous scaling law with respect
to the cavity size. Optical responses of the proposed structure
can be flexibly tuned not only by the geometry of the cavity but
also the filling ratio of metals. The ratio between the mode vol-
ume and the Q factor of IMCs is further increased, leading to a
significant enhancement of Purcell factor. The proposed struc-
ture can be fabricated in experiments by applying advanced
technologies of lift-up and lithography such as electron-beam
evaporation, electron-beam or focused ion beam lithography.
There have been many experimental studies on both IMCs
and mirror coupled resonators demonstrating the good agree-
ment between measured and calculated results, though some
deviations may arise due to the defects of fabricated samples
[15,22,42]. The calculated results presented in this work con-
tribute solid theoretical cornerstones to future experimental
studies. The idea that combining IMCs and BICs is not limited
to the structure studied in this work and can be extended
to other systems applying different types of IMCs, for ex-
ample, nanowire arrays, and different types of BICs, for exam-
ple, symmetry-protected BICs. In addition, there have been
several strategies to overcome Ohmic loss of metals in optical
nanocavities including gain compensation and low temperature
environment [51–53]. We believe our results promote the ap-
plications of IMCs in nonlinear optics, light-harvesting devices,
spontaneous emission engineering, strong coupling systems,
and so on.

APPENDIX A: MAXWELL–GARNETT THEORY

HMMsmade of stacked metal–dielectric layers can be considered
as a homogeneous effective medium with a uniaxial permittivity
tensor. If metal–dielectric layers are stacked in the z direction,
then the principal components of the permittivity tensor can
be obtained by the Maxwell–Garnett theory [18–20]:

εx∕y � f mεm � �1 − f m�εd,
εz �

εmεd
�1 − f m�εm � f mεd

, (A1)

where εm and εd are the permittivity of metal and dielectric,
respectively. HMMs can be categorized to type-I and type-II

1000 1100 1200 1300 1400
0

40

80

120
320

280

240

200

160

120

80

s (
nm

)

P
u
rc

el
l 

fa
ct

o
r

Wavelength (nm)

(a)

100 200 300
0.8

1.0

1.2

1.4

N
o

rm
al

iz
ed

 P
u

rc
el

l 
fa

ct
o

r

s (nm)

(b)

Fig. 6. Enhancement of Purcell effect by BICs in mirror coupled
IMC arrays. (a) Spectra of Purcell factor of the structures for different
s. (b) Normalized Purcell factor as a function of s.
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that correspond to Re�εx∕y�>0, Re�εz� < 0 and Re�εx∕y� < 0,
Re�εz� > 0, respectively. Based on Eq. (A1), the optical phase
diagram of the effective medium is shown in Fig. 7 from which
we can see that the stacked Ag–Si multilayers can be treated as
type-II HMMs as long as 0.2 < f m < 0.8 in the wavelength
range of 1000 to 1600 nm. Strictly speaking, Eq. (A1) is ac-
curate only when the metal–dielectric pair is infinitely thin,
i.e., tc → 0. Although there have been more precise equations
that incorporate the corrections related to tc [54,55], Eq. (A1)
can be valid as long as tc is small enough to ensure the metal–
dielectric multilayers can be regarded as a homogenous effective
medium. In addition, a finitely thick metal–dielectric pair will
put an upper limit to the wavenumber of HMMs given by
2π∕tc which is much larger than the corresponding wavenum-
ber in vacuum [14].

APPENDIX B: NUMERICAL METHOD

Numerical results of absorption spectra, radiation power, and
Purcell factors of electric dipoles were calculated by using the
finite-difference time-domain method. In all the simulations,
the global mesh accuracy was set as 8 per wavelength and mesh
sizes of regions containing IMCs were set as 1 nm to ensure the
accuracy of results. For the calculation of radiative power and
Purcell factors, perfectly matched layers (PMLs) were applied in
the x, y, and z directions to avoid unphysical reflections from
the simulation boundaries. For the calculation of absorption
(reflection) spectra under the excitation of a normally incident
plane wave, a single unit cell with periodic boundary conditions
in the x and y directions, and PMLs in the z direction were
applied. Eigenvalues and Q factors were calculated by using
an eigenfrequency solver based on the finite element method.
Except for PMLs in the z direction, Floquet periodic conditions
were used in the x and y directions with kFx � kFy � 0, where
kFx (kFy) is the x (y) component of k-vector for Floquet

periodicity. Meshes were refined until eigenvalues andQ factors
reached convergence.

To calculate γr and Q r, the imaginary part of the permit-
tivity of Ag was set as zero in the eigenfrequency solver.
Then, γnr and Qnr can be obtained based on γt � γr � γnr
and 1∕Q t � 1∕Q r � 1∕Qnr, respectively. The mode volume
V m was calculated based on the following equations [22]:

V m �
RRR

W �r�d3r
max�W �r�� , (B1)

W �r� � 1

2

�
Re

�
d�ωε�
dω

�
jE�r�j2 � μjH�r�j2

�
, (B2)

where W �r� is the local electromagnetic energy density at po-
sition r, ε and μ are the local permittivity and permeability,
respectively, and the integration is executed over the entire
space. E�r� and H�r� are the local electric and magnetic fields,
respectively, calculated by the eigenfrequency solver.

APPENDIX C: IFSS OF HMMS AND
ANOMALOUS SCALING LAW OF IMCS

In a uniaxial medium, the equation of IFS for the TM-
polarized wave can be expressed as

k2x � k2y
εzz

� k2z
εx∕y

� k20, (C1)

where k0 is the magnitude of wave vector in vacuum, and
ki �i � x, y, z� is the i component of the wave vector in the
medium. Based on Eq. (C1), Fig. 8 shows the cross-section
view of the IFSs of Ag–Si HMMs (f m � 0.5) and a normal
material (Si, εzz � εx∕y � 12.25) on the kx − kz plane for a

Fig. 7. Optical phase diagram of the effective medium made of
stacked Ag–Si multilayers.

Fig. 8. Cross-section view of the IFSs of Ag–Si HMMs (f m � 0.5)
and Si on the kx − kz plane for a short and a long wavelength. k 0 is the
magnitude of a reference wave vector which is set as 2π∕1200 nm.
The vertical dashed lines are guide for fixed kx .
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shorter (1000 nm) and a longer wavelength (1400 nm). As can
be seen, the IFSs of HMMs exhibit hyperbolic shape which is
totally different from that of a normal material that is a closed
sphere. More importantly, the IFS of HMMs at a longer wave-
length (red solid line) is flatter than that of a shorter wavelength
(blue solid line). As a result, a larger (smaller) kz resides at the
IFS of a longer (shorter) wavelength for a fixed in-plane wave
vector as marked by the red (blue) upward-triangle. This is
opposite to the case of a normal material, for example, Si, as
shown by the dashed circles and boxes.

A cavity mode of order (mx , my, mz ) in cuboid IMCs is
formed when the round-trip phases of optical waves propagat-
ing along x, y, and z are integer multiples of 2π, i.e.,

2kxLx � Δφx � 2mxπ,

2kyLy � Δφy � 2myπ,

2kzLz � Δφz � 2mzπ: (C2)

Here Li �i � x, y, z� is the cavity length in the i direction,
and Δφi �i � x, y, z� represents the phase shift in the i direc-
tion caused by the reflection at cavity–air interfaces. For cavity
modes of different orders in an IMC with fixed size, such as
those modes labeled in Fig. 1(b), the mode orders in the x
and y directions are mx � my � 1, which means kx and ky
of optical waves are fixed for these modes. Meanwhile, kz
has to increase for a mode of higher order in the z direction,
i.e., a larger mz based on Eq. (C2). Similar discussion can be
applied for cavity modes of the same orders but with different
cavity size in the z direction compared to the case in Figs. 4(c)
and 4(d). A thinner cavity (smaller Lz ) with a smaller number of
Ag–Si pairs results in larger kz. Then the anomalous scaling law
of resonance wavelength of cavity modes in IMCs can be com-
prehended according to the IFSs shown in Fig. 8 as larger kz at
the same kx and ky locates on the IFS of longer wavelength.
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